Study of ditau production at ZEUS

Elisabetta Gallo

ZEUS Collaboration

INFN Firenze

Newport News, 12/4/2011

Isolated leptons at HERA

As in every collider isolated leptons at high p_t are a signature for possible new physics beyond the SM. Long tradition at HERA:

Two isolated electrons

One lepton, missing p_t and a high p_t jet

Ditau production at HERA

(Simulated by the GRAPE MC)

Ditau production at HERA

Strategy for Ditau production

HERA II data (0.33 fb⁻¹), τ -> e, μ ,h all three decays considered, in each combination but:

- no TT -> $\mu\mu$ or ee, impossible to distinguish from dielectron or dimuon process
- only the "elastic" process is considered, the inelastic DIS process would be an enourmous background

Ditau selection

Preselection: no deposit in the forward beampipe region, low multiplicity (from 2 to 7 charged tracks). Then look for two objects (e, muon or hadronic jets), and the eventually the scattered electron (1%

Tau jets

A tau-jet, narrow and low multiplicity

A QCD-jet, broader, higher multiplicity

Use a multivariate discrimination technique to distinguish between tau jets and QCD jets, based on 6 variables dependent on the shape of the jets

Discriminant for Tau jets

- The jet mass

$$M_{jet} = \sqrt{(\sum_{i} E_{i})^{2} - (\sum_{i} p_{i,x})^{2} - (\sum_{i} p_{i,y})^{2} - (\sum_{i} p_{i,z})^{2}}$$

- The 1st and 2nd moment of the radial extension

$$Rmean = \left\langle R \right\rangle = \frac{\sum_{i} \{E_{i} \cdot R_{i}\}}{\sum_{i} E_{i}} \qquad Rrms = \sqrt{\frac{\sum_{i} E_{i} \cdot \left(\left\langle R \right\rangle - R_{i}\right)^{2}}{\sum_{i} E_{i}}}$$

- The 1st moment of longitudinal extension

$$Lmean = \langle L \rangle = \frac{\sum_{i} E_{i} \cdot \cos \alpha_{i}}{\sum_{i} E_{i}}$$

- Distance between jet axis and trks

$$Rtrk = \sum_{i}^{Ntrk} \sqrt{(\Delta \eta_i^2 + \Delta \phi_i^2)}$$

- N_{subjets} ($y_{\text{cut}} = 5 \times 10^{-4}$)

J. Maeda's PhD thesis, Tokyo University

Discriminant for Tau jets

- The jet mass

$$M_{jet} = \sqrt{(\sum_{i} E_{i})^{2} - (\sum_{i} p_{i,x})^{2} - (\sum_{i} p_{i,y})^{2} - (\sum_{i} p_{i,z})^{2}}$$

- The 1st and 2nd moment of the radial extension

$$Rmean = \left\langle R \right\rangle = \frac{\sum_{i} \left\{ E_{i} \cdot R_{i} \right\}}{\sum_{i} E_{i}} \qquad Rrms = \sqrt{\frac{\sum_{i} E_{i} \cdot \left(\left\langle R \right\rangle - R_{i} \right)^{2}}{\sum_{i} E_{i}}}$$

- The 1st moment of longitudinal extension

$$Lmean = \langle L \rangle = \frac{\sum_{i} E_{i} \cdot \cos \alpha_{i}}{\sum_{i} E_{i}}$$

- Distance between jet axis and trks

$$Rtrk = \sum_{i}^{Ntrk} \sqrt{(\Delta \eta_i^2 + \Delta \phi_i^2)}$$

- N_{subjets} (y_{cut} =5X10⁻⁴)

Discriminant for Tau jets

Calculate a discriminant in a 6-dimensional box:

$$\mathcal{D}(\vec{x}) = \frac{\rho_{\text{sig}}(\vec{x})}{\rho_{\text{sig}}(\vec{x}) + \rho_{\text{bkg}}(\vec{x})}$$

D->1 for signal, D->0 for background

Select jets with D>0.8

T. Carli and B. Koblitz NIM A501 (2003) 576.

(e)-e-jet channel

 $P_t^e > 2$ GeV, $17^\circ < \theta_e < 160^\circ$, $P_t^{jet} > 5$ GeV, $|\eta| < 2$ Main issue: DIS backg. In e-jet, e opposite charge to the beam

- ZEUS 0.33 fb⁻¹
- Total SM

(e)-jet-jet channel

P_t^{jet} > 5 GeV, |η|<2 The two jets have opposite charge and D>0.8 Main issue: normalization of the dijet photoproduction diffractive background

- ZEUS 0.33 fb⁻¹
- Total SM

 $\nabla \gamma \gamma \rightarrow \tau^+ \tau^- (GRAPE)$

A jet-jet event

(e)-e- μ channel

 $P_t^e > 2$ GeV, $17^\circ < \theta_e < 160^\circ$, $P_t^{muon} > 2$ GeV, Main issue: dimuon backg. In emuon, e opposite charge to the beam

(e)- μ -jet channel

 P_t^{jet} > 5 GeV, $|\eta|$ <2 The jet must have D>0.8

All channels

Good agreement with the SM; ratio ditau/total SM shows that purity is high. Jet energy scale dominates the systematics

All channels

ZEUS ditau events HERA II data (L=0.33 fb⁻¹)

Topology	$(e-)e-\mu$	(e-)e-jet	$(e-)\mu$ -jet	(e-)jet-jet	Total
Data	4	7	4	10	25
Total MC	$3.6^{+1.3}_{-0.3}$	$8.8^{+1.8}_{-0.8}$	$8.0^{+2.2}_{-1.2}$	$14.4^{+2.2}_{-3.5}$	$34.8^{+3.9}_{-3.8}$
$\tau^+\tau^-$ MC	$3.0^{+0.3}_{-0.2}$	$5.3^{+0.3}_{-0.2}$	$5.9^{+0.5}_{-0.5}$	$9.0^{+0.4}_{-0.3}$	$23.2^{+0.7}_{-0.7}$

purity	82 %	60 %	73 %	63 %	67 %
--------	------	------	------	------	------

One of the smallest sample at HERA and one of the most difficult to select

Results

No surprise at high mass and high total Pt

Summary

- In summary 25 ditau events selected at ZEUS with 67% purity
- The cross section is measured in the kinematic region $p_t(\tau)>5$ GeV, $17^\circ<\theta(\tau)<160^\circ$ for both τ , (acceptance of 1.23%, due to the p_t cut) :

$$\sigma$$
=3.3 ±1.3 (stat.) +1.0 _{-0.7} (syst.) pb

(SM
$$\sigma$$
=5.67 ±0.16 (theor.))